WebJun 15, 2024 · Training on distributed systems is different as we need to split the data and maximize data locality for each machine. DGL-KE achieves this by using a min-cut graph partitioning algorithm to split the knowledge graph across the machines in a way that balances the load and minimizes the communication. WebNov 4, 2024 · I have found a similar issue #347, but it was closed as requests was only a dependency of an example. However, now I am meeting this problem again. To Reproduce. Steps to reproduce the behavior: I think conda installing dgl and then importing dgl, in a new environment will do the job.
PaGraph: Scaling GNN Training on Large Graphs via …
WebAug 16, 2024 · I have DGL working perfectly fine in a distributed setting using default num_worker=0 (which does sampler without a pool my understanding). Now I am extending it to using multiple samplers for higher sampling throughput. In the server process, I did this: start_server(): os.environ[“DGL_DIST_MODE”] = “distributed” os.environ[“DGL_ROLE”] … Webdgl.distributed.partition.load_partition (part_config, part_id, load_feats=True) [source] ¶ Load data of a partition from the data path. A partition data includes a graph structure … greffe social
dgl — DGL 1.1 documentation
WebJul 1, 2024 · This includes two steps: 1) partition a graph into subgraphs, 2) assign nodes/edges with new IDs. For relatively small graphs, DGL provides a partitioning API :func:`dgl.distributed.partition_graph` that performs the two steps above. The API runs on one machine. Therefore, if a graph is large, users will need a large machine to partition … Webload_state_dict (state_dict) [source] ¶. This is the same as torch.optim.Optimizer load_state_dict(), but also restores model averager’s step value to the one saved in the provided state_dict.. If there is no "step" entry in state_dict, it will raise a warning and initialize the model averager’s step to 0.. state_dict [source] ¶. This is the same as … WebDGL has a dgl.distributed.partition_graph method; if you can load your edge list into memory as a sparse tensor it might work ok, and it handles heterogeneous graphs. Otherwise, do you specifically need partitioning algorithms/METIS? There are a lot of distributed clustering/community detection methods that would give you reasonable … greffes toulon